Current topics

Staging and grading of chronic gastritis

Massimo Rugge MD, Robert M. Genta MD*

Department of Oncological and Surgical Sciences, University of Padova, 35100 Padova, Italy
Department of Pathology, University of Genève, 1211 Genève, Switzerland

Received 22 September 2004; received in revised form 7 November 2004

Keywords: Gastritis; Staging and grading; Gastritis histology

Summary Chronic gastritis is an inflammatory condition of the gastric mucosa that may include structural alterations of the glandular compartment. The semiquantitative scoring systems advocated in the Sydney Systems and the subsequent Atrophy Club Guidelines remain essential for the recognition of the spectrum of the lesions detectable in gastric inflammatory disease. Most practicing pathologists, however, find them too cumbersome to use in their routine diagnostic activities. In this article, we propose a reporting system for chronic gastritis in staging and grading. Staging would convey information on the topography and extension of the gastric atrophic changes, whereas grading should represent the semiquantitative assessment of the combined severity of both mononuclear and granulocytic inflammation. This system could offer gastroenterologists a more immediate perception of the overall condition of the gastric mucosa while also providing useful information about gastric cancer risk.

© 2005 Elsevier Inc. All rights reserved.

1. Introduction

Chronic gastritis is an inflammatory condition of the gastric mucosa characterized by elementary lesions whose extent and distribution are related to their etiology and host responses. Infection with Helicobacter pylori is by far the most common cause of chronic active gastritis worldwide; chemical agents and autoimmune phenomena account for a small proportion of chronic, usually nonactive gastritides. Chronic gastritis is epidemiologically and biologically linked to the development of gastric cancer [1] and H pylori is listed as a class I carcinogen [2]. However, the assessment of cancer risk in individual patients is difficult in part because gastric carcinogenesis is modulated by poorly defined factors, including environment, bacterial strain, and host responses.

Epidemiological data suggest that extent, intensity, and distribution patterns of gastric inflammation and atrophy are consistently related to the incidence of gastric cancer in a population [3-6]. Although these features can be easily evaluated through the histopathological examination of gastric biopsy specimens, we lack a way to translate the pathological information into a standardized report that would (1) convey comprehensive information on the gastric condition and (2) lend itself to a straightforward analysis of cancer risk.

Gastritis can be viewed at two different levels: a basic level represented by the elementary lesions and a hierarchically higher level that defines the disease (ie, the combination and topographical distribution of the different
elementary lesions). Both the 1990 original Sydney System [7] and its updated 1994 version (also known as the Houston-updated Sydney System) [8] provided a structure to describe and quantify the elementary lesions, that is, the inflammatory cell populations, and the accompanying changes of the epithelial district.

Although the Houston-updated Sydney System’s guidelines are now widely used [9], the interobserver agreement among pathologists has shown variable levels of consistency, particularly with regards to atrophy [10,11]. In an attempt to correct this problem, an international group of pathologists (Atrophy Club 2000) revisited the spectrum of gastric atrophy and intestinal metaplasia (IM) [12,13]. A new definition of atrophy, which includes a metaplastic and a nonmetaplastic category, was proposed, and new criteria for the 2 main phenotypes of chronic gastritis (nonatrophic and atrophic) were established [12,13]. The schema for this classification is depicted in Fig. 1. Gastrointestinal pathologists who tested this classification were able to obtain a highly satisfactory level of interobserver variation [13].

As early as 1955, Basil Morson [14] observed that “the incidence and the extent of IM is greatest in stomachs containing carcinomas and least in those with duodenal ulcer, with cases of gastric ulcer taking an intermediate position.” Later, Pelayo Correa [15,16] demonstrated that patchy areas of atrophic-metaplastic changes in the antral and oxyntic mucosa (ie, multifocal atrophic gastritis [MAG]) frequently coexisted with gastric ulcer and were the most frequent setting for gastric adenocarcinoma. On the basis of these and other observations [17], the Sydney Systems took into account the topographical distribution of the elementary lesions in the different gastric compartments and recommended that multiple endoscopic biopsy samples be taken from predefined sites of the stomach [8]. Five main sites were considered necessary: (1) greater and lesser curvature of the distal antrum (mucus-secreting mucosa), (2) greater and lesser curvature of the proximal corpus (oxyntic mucosa), and (3) lesser curvature at the incisura angularis, where the earliest atrophic-metaplastic changes tend to occur [18,19]. The scores of the elementary lesions found in individual biopsy samples are averaged for each gastric compartment and used to characterize different patterns of gastritis (eg, antral-predominant nonatrophic, antrum-restricted atrophic).

These pattern-based categorizations may allow placing patients on approximate points of the natural history of chronic gastritis, from the reversible inflammatory lesions (mostly limited to the antrum) at the one end to the extensive atrophic changes associated with high risk for gastric cancer at the other [4,20-22].

This article puts forward a proposal for a systematic approach to this categorization. Building on our current understanding of the morphological alterations of gastritis and their evolution, we suggest that—as in chronic hepatitis [23,24]—it could be useful to report the phenotypes of long-standing gastritis in grading and staging. Grading would express the cumulative intensity of the inflammatory components, whereas staging would convey information on the anatomical extent of the atrophic-metaplastic changes related to cancer risk.

Self-limiting gastritides, also referred to as acute gastritides or gastropathies, are a group of conditions generally characterized by limited inflammatory responses and variable erosive and hemorrhagic lesions. Most often caused by environmental injury (eg, chemical), they tend to undergo rapid recovery after the damaging agents are removed. Such gastropathies have no known relationship with cancer, and therefore, are not included in this discussion.

2. The phenotypes of gastritis

Chronic gastritis can be atrophic or nonatrophic. Each of these two main categories encompasses several clinicopathologic entities with different patterns of inflammatory and epithelial alterations.

2.1. Non-atrophic gastritis

2.1.1. Antral-predominant non-atrophic gastritis

This pattern (synonymous with hypersecretory, diffuse antral, or superficial antral gastritis) [16] is the most common expression of *H pylori* gastritis in the Western
world. It is characterized by (1) absence of atrophy, (2) a moderately to severely inflamed antrum and (3) a normal to mildly inflamed corpus. This condition is associated with either normal or increased acid secretion. Most patients with antrum-predominant gastritis experience no symptoms; they do, however, have an estimated lifetime risk of duodenal ulcer of ~20%, and possibly a minimally increased risk of adenocarcinoma of the distal stomach when compared to the noninfected population [25].

2.2.1. Nonatrophic pangastritis
In some subjects infected with *H pylori*, marked inflammation is distributed throughout the stomach, with little or no difference between antrum and corpus. Particularly frequent in poorly sanitized areas where *H pylori* is highly endemic, pangastritis is widely believed to be the background on which atrophy eventually develops [26]. Although this hypothesis is founded on reasonable grounds, we are not aware of any studies that substantiate this proposition.

2.2. Atrophic chronic gastritis

Gastric mucosal atrophy is defined as the loss of appropriate glands [13]. This loss occurs when glands damaged by inflammation are replaced either by connective tissue (scarring) or by glandular structures inappropriate for location (metaplasia). Most often, the metaplastic transformation assumes the phenotype of the glands lined by intestinal-type epithelium (IM), but in the oxyntic mucosa, it may also take the form of mucin-secreting antral glands (pseudopyloric metaplasia). The histological criteria for scoring atrophic-metaplastic changes in both the antral and oxyntic mucosa have been extensively described [13], and visual analogue scales have been proposed as a reference standard [27]. Even when extensive biopsy protocols are used, inevitable sampling errors may affect the documentation of the atrophic foci, which are frequently patchy. In the absence of more accurate methods, however, we are bound to accept the intuitive premise that the greater the extension of atrophy, the more likely it is that it is biopsied, and therefore, that the extent and distribution detected by the recommended 5-sample biopsy protocol are a valid representation of the true mucosal atrophy.

2.2.1. Antrum-restricted atrophic gastritis
In the Western world, when atrophy is detected in biopsy specimens from dyspeptic patients, it is most frequently located in the antral biopsy samples. In such patients, atrophic-metaplastic changes are the consequence of current (or past) *H pylori* infection. The biopsy set will show (1) patchy metaplastic atrophy restricted to the distal mucin-secreting mucosa (including the *incisura angularis*) coexisting with moderate to severe inflammation and (2) a normal or mildly inflamed corpus, with no atrophic changes.

2.2.2. Corpus-restricted (corpus-predominant) atrophic gastritis
In the oxyntic mucosa, atrophic-metaplastic changes can be detected in the absence of any coexisting atrophic changes of the distal stomach or in association with atrophic foci of the antral mucosa. The former condition is considered virtually pathognomonic of an autoimmune etiology and it is associated with an increased cancer risk [28,29]. Rarely, autoimmune atrophy (by definition, affecting only oxyntic glands) may coexist with antral atrophy resulting from a concurrent *H pylori* infection. In these cases, pathogenetically different atrophic changes may topographically merge with each other (corpus-autoimmune and *H pylori*-associated atrophic gastritis), resulting in a substantially increased cancer risk.

2.2.3. Multifocal atrophic gastritis
Multifocal atrophic gastritis (MAG) (formerly referred to as “environmental chronic atrophic gastritis”) is most prevalent in populations that are (or have been until recently) living in suboptimal sanitary conditions, including much of southern and eastern Asia, Latin America, and several parts of central, eastern, and southern Europe [30-32]. Socioeconomic factors may be a surrogate for other unknown agents or biological situations that modulate the evolution of gastritis, because there are notable epidemiological exceptions to this association. For example Japan, a leading economic power with high levels of sanitation and personal hygiene, has one of the world’s highest prevalence of atrophic gastritis and a high incidence of gastric adenocarcinoma [33]. In contrast, Equatorial Africa, in spite of its precarious socioeconomic texture, inadequate sanitary standards, and a prevalence of *H pylori* close to 90%, reportedly has a low prevalence of atrophic gastritis as well as a low incidence of gastric adenocarcinoma [34,35].

Atrophic gastritis is a risk factor for gastric noninvasive neoplasia (dysplasia) and intestinal-type adenocarcinoma [36]. It also predisposes to gastric ulcer [37-39]. In MAG, biopsy specimens show foci of atrophic-metaplastic changes in both antral and corpus mucosa. In contrast to antrum-restricted atrophic gastritis, MAG may display severe inflammation in the oxyntic mucosa, and acid secretion may be reduced, suggesting a more advanced disease. The nosological relationship between antrum-restricted atrophy and MAG remains to be determined; although it is possible that they are biologically different diseases, it seems more likely that they represent different stages of the same disease. Some data suggest that in *H pylori*–chronic gastritis, the stage of antrum-restricted atrophy precedes the more extensively spreading (multifocal) atrophy, but this hypothesis awaits verification.

2.2.4. Atrophic pangastritis
Atrophic pangastritis (similar magnitude of atrophy and inflammation in antrum and corpus) is likely to represent an advanced stage of MAG, with which it shares the
epidemiological characteristics. Atrophic pangastritis is the most prevalent setting for both noninvasive and invasive gastric neoplasia [26,40,41]. In the stomach, the field cancerization process is mucosal atrophy: the atrophic areas with their metaplastic glands are the anatomic structures prone to the phenotypical and genotypic alterations leading to cancer. The field cancerization theory provides the rationale for the linear relationship between the extent of atrophic changes and the risk of cancer [42].

3. Generating a clinically helpful histology report

Using the framework provided by the Sydney System’s and the Atrophy Club’s analytic approach, we have generated a proposal for a grading and staging scheme that integrates the relevant histopathological data gathered and interpreted by the pathologist and delivers them in the form of a simple, yet information-rich, report. We submit that this scheme could do for chronic gastritis what the grading and staging chronic hepatitis system introduced by the International Group of the Hepatologists has done for chronic hepatitis, making prognostically significant and reproducible information immediately available in the clinical practice [23,24].

Grading is a measure of the severity of the inflammatory lesions. Although other grading systems consider separately the mononuclear from the neutrophilic infiltrate, there is no evidence that this distinction is clinically relevant. We propose that grading should represent the semiquantitative assessment of the combined severity of mononuclear and neutrophilic inflammation (Fig. 2). The final grade of inflammation results from the combination of the grades of the inflammatory lesions in antral and corpus mucosa.

![Fig. 2](image)

Grading: intensity of the inflammatory cells (lymphocytes, plasma cells, and granulocytes) within the lamina propria is graded as absent (0), mild (1), moderate (2) and severe (3) according to the visual analogue scales of the Updated Sydney System. The final grade of inflammation results from the combination of the grades of the inflammatory lesions in antral and corpus mucosa.

Fig. 3 Staging: atrophy is defined as loss of appropriate glands (with or without IM). In each compartment (ie, mucous-secreting antral and oxyntic/corpus mucosa), atrophy is scored in a 4 tiered scale (0-3), according to the visual analogue scale of the Updated Sydney System.

![Fig. 3](image)
granulocytic inflammation scored in both antral and oxyntic biopsy samples. Grades range from 0 (absence of inflammatory cells in any of the specimens) to 4 (a very dense infiltrate in all the biopsy samples) (Fig. 2).

Staging refers to the extent of atrophy with or without IM. The stage of chronic gastritis is related to both its duration and to the host’s response to the etiological agent(s) and may have implications for the prognosis and management of the patient. Some studies suggested that the histochemical phenotype of IM is associated with a cancer risk increasing progressively from type I to type III [43,44]. Because a greater extension of metaplasia is associated with a greater proportion of type III IM [40], we uphold the recommendation of the Updated Sydney System discouraging the use of histochemical phenotyping to determine the type of metaplasia. Atrophy should be assessed using the histological criteria detailed by the Atrophy Club, which have been validated and shown to be reproducible [13]. Fig. 3 shows how the scores from antral and oxyntic mucosal biopsy sites can then be combined and reported using a scale ranging from 0 (absence of atrophy and metaplasia) to 4 (pan-atrophy involving all antral and oxyntic samples).

4. Conclusions

The article reporting the Updated Sydney System, published in October 1996, has recently reached the 1000-citation milestone [9], indicating that the semiquantitative scoring system it advocated remains a useful tool for clinical research. Nevertheless, the very same pathologists who use it when assessing biopsies for clinical studies find it too cumbersome to use in their routine diagnostic activities. We suggest that the method proposed here is both feasible and practical. When a satisfactory set of activities. We suggest that the method proposed here is both feasible and practical. When a satisfactory set of scoring system could represent the concluding message of the histological report.

An initial informal testing of this proposed scheme has been well received by gastroenterologists in our respective institutions. Once accepted and disseminated, it could offer clinicians an overall perception of the gastric disease, while also providing potentially useful information about cancer risk. Ten years ago, a similar nomenclature was proposed for reporting chronic hepatitis. Tested in the routine practice and now used by virtually all hepatopathologists, staging and grading have been proven to be both reproducible and clinically useful. Our hope is that this proposal stimulates a constructive debate and that this scheme can eventually be tested in a variety of clinicoepidemiological settings to determine (1) whether pathologists can use it with a satisfactory interobserver consistency and (2) whether the prognostic value that we have hypothesized can be confirmed in the field.

References

[9] ISI web of science — Citation Index. Science Citation Index Expanded (SCI-EXPANDED)-1945-present. 2004.

